CEMSupra 2018

CEMS International Symposium on Supramolecular Chemistry and Functional Materials 2018

Abstracts

2018

January 9th (Tue) ➤ 10th (Wed)

Venue
Ito Hall, The University of Tokyo

Organized by

RIKEN Center for Emergent Matter Science

CEMS

Cooperate with

Quantum-Phase Electronics Center,
The University of Tokyo
Precise Bending Control of Crosslinked Liquid-Crystalline Polymer by Two-Photon Processes

Shota Sasaki,1 Toru Ube,2 Kenji Katayama,1 Masayasu Muramatsu,3 Hikaru Sotome,3 Hiroshi Miasaka,3 and Tomiki Ikeda1,4,*

1Graduate School of Science and Engineering and 2Research & Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
3Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, China
Email: tikeda@tamacc.chuo-u.ac.jp

Crosslinked liquid-crystalline polymers (CLCPs) containing photochromic moieties show macroscopic deformation upon irradiation with light by one-photon processes.1 If CLCPs can be activated by two-photon excitation, on the other hand, deformation of CLCPs could be much more precisely controlled thanks to the ability of the two-photon processes to achieve three-dimensional spatial resolution.

We developed a composite system containing a stilbene derivative as a two-photon absorbing sensitizer and azotolane monomers as photochromic mesogens. We prepared interpenetrating polymer network (IPN) films2 containing azotolane and the stilbene derivative. The IPN film bend away from the light source upon irradiation with femtosecond laser pulses at 600 nm focusing on near the backside of the film (Fig. 1). This result indicetares that trans-cis isomerization reaction of azotolane occurs only in the backside region of the film by space selectivity of two-photon excitation (Fig. 2).

Fig. 1 Bending behavior of the IPN film upon irradiation with femtosecond laser pulses.

Fig. 2 Bending mechanism of the IPN films by two-photon processes.


Shota Sasaki graduated from Department of Applied Chemistry at Chuo University in March 2016. He has been a graduate student in the group of Prof. Ikeda at Chuo University since April 2016. His research interests focus on crosslinked liquid-crystalline polymers and two-photon absorption.